human ventricular
Cardiomyocytes (hvCM)
High-purity, mature, ventricular cardiac muscle cells derived from pluripotent stem cells
HIGH PURITY & QUALITY

High-purity hvCM, with stringent quality control in place.

DEFINED FUNCTIONS

Well-characterized electrophysiology, transcriptome and proteome.

CELLULAR APPLICATIONS

Ready-for-use in manual patch clamping and drug screening analysis applications.

Human ventricular cardiomyocytes (hvCM) are high-purity, mature, ventricular cardiac muscle cells derived from human pluripotent stem cells. hvCMs reflecting different genetic backgrounds can be produced from Novoheart's stock human pluripotent stem cell lines or customer-supplied human pluripotent stem cell lines (please contact us for custom orders).

  -  Rapid recovery from cryopreservation with cell viability ≥ 80%
  -  Well-characterized electrophysiology, transcriptome and proteome

hvCM can be purchased via two options:

  • (Cat. No. 1-01) Unpurified hPSC-CMs (>70% purity)
  • (Cat. No. 1-02) Purified hPSC ventricular CMs
  • Cardiac Toxicity Screening
  • Drug Discovery: drug screening and efficacy assessment
  • Regenerative Studies: single-cell analysis using manual or automated patch-clamp, optical imaging of voltage- or Ca2+-sensitive fluorophores.

Keung, W., Ren, L., Sen Li, Wong, A. O., Chopra, A., Kong, C. W., Tomaselli G. F., Chen, C. S., Li, R. A. Non-cell autonomous cues for enhanced functionality of human embryonic stem cell-derived cardiomyocytes via maturation of sarcolemmal and mitochondrial K(ATP) channels. Sci Rep. 6, 34154 (2016).


Poon, E., Keung, W., Liang, Y., Ramalingam, R., Yan, B., Zhang, S., Chopra, A., Moore, J., Herren, A., Lieu, D. K., Wong, H. S., Weng, Z., Wong, O. T., Lam, Y. W., Tomaselli, G. F., Chen, C., Boheler, K. R. & Li, R. A. Proteomic Analysis of Human Pluripotent Stem Cell-Derived, Fetal, and Adult Ventricular Cardiomyocytes Reveals Pathways Crucial for Cardiac Metabolism and Maturation. Circ Cardiovasc Genet 8, 427–436 (2015).


Zhang, S., Poon, E., Xie, D., Boheler, K. R., Li, R. A., Wong, H. S. Consensus comparative analysis of human embryonic stem cell-derived cardiomyocytes. PLoS One. 10, e0125442 (2015).


Karakikes I., Stillitano F., Nonnenmacher M., Tzimas C., Sanoudou D., Termglinchan V., Kong C. W., Rushing S., Hansen J., Ceholski D., Kolokathis F., Kremastinos D., Katoulis A., Ren L., Cohen N., Gho J. M., Tsiapras D., Vink A., Wu J. C., Asselbergs F. W., Li R. A., Hulot J. S., Kranias E. G., Hajjar R. J. Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy. Nat Commun. 6, 6955 (2015).


Chen, G., Li, S., Karakikes, I., Ren, L., Chow, M. Z., Chopra, A., Keung, W., Yan, B., Chan, C. W., Costa, K. D., Kong, C. W., Hajjar, R. J., Chen, C. S., Li, R. A. Phospholamban as a crucial determinant of the inotropic response of human pluripotent stem cell-derived ventricular cardiomyocytes and engineered 3-dimensional tissue constructs. Circ Arrthyhm Electrophysiol. 8, 193-201 (2015).


Li, R. A. Cardiovascular regeneration. Stem Cell Res Ther. 5, 141 (2014).


Weng, Z., Kong, C.-W., Ren, L., Karakikes, I., Geng, L., He, J., Chow, M. Z. Y., Mok, C. F., Chan, H. Y. S., Webb, S. E., Keung, W., Chow, H., Miller, A. L., Leung, A. Y. H., Hajjar, R. J., Li, R. A. & Chan, C. W. A Simple, Cost-Effective but Highly Efficient System for Deriving Ventricular Cardiomyocytes from Human Pluripotent Stem Cells. Stem Cells Dev. 23, 1704–1716 (2014).


Keung, W., Boheler, K. R., Li, R. A., Developmental cues for the maturation of metabolic, electrophysiological and calcium handling properties of human pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther. 5, 17, (2014).


Karakikes, I., Senyel, G. D., Hansen, J., Kong, C.-W., Azeloglu, E. U., Stillitano, F., Lieu, D. K., Wang, J., Ren, L., Hulot, J.-S., Iyengar, R., Li, R. A. & Hajjar, R. j. Small Molecule-Mediated Directed Differentiation of Human Embryonic Stem Cells Toward Ventricular Cardiomyocytes. Stem Cells Transl. Med. 3, 18–31 (2014).


Li, S., Cheng, H., Tomaselli, G. F., Li, R. A. Mechanistic basis of excitation-contraction coupling in human pluripotent stem cell-derived ventricular cardiomyocytes revealed by Ca2+ spark characteristics: direct evidence of functional Ca2+-induced Ca2+ release. Heart Rhythm. 11, 133-140 (2014).


Li, S., Chen, G., Li, R. A. Calcium signalling of human pluripotent stem cell-derived cardiomyocytes. J Physiol. 591, 5279-5290 (2013).


Poon, E., Yan, B., Zhang, S., Rushing, S., Keung, W., Ren, L., Lieu, D. K., Geng, L., Kong, C. W., Wang, J., Wong H. S., Boheler, K. R., Li, R. A. Transcriptome-guided functional analyses reveal novel biological properties and regulatory hierarchy of human embryonic stem cell-derived ventricular cardiomyocytes crucial for maturation. PLoS One. 8, e77784 (2013).


Chow, M. Z., Geng, L., Kong, C. W., Keung, W., Fung, J. C., Boheler, K. R., Li, R. A. Epigenetic regulation of the electrophysiological phenotype of human embryonic stem cell-derived ventricular cardiomyocytes: insights for driven maturation and hypertrophic growth. Stem Cells Dev. 22, 2678-2690 (2013).


Chow, M., Boheler, K. R., Li, R. A. Human pluripotent stem cell-derived cardiomyocytes for heart regeneration, drug discovery and disease modelling: from the genetic, epigenetic, and tissue modeling perspective. Stem Cell Res Ther. 4, 97 (2013).


Lieu, D. K., Fu, J. D., Chiamvimonvat, N., Tung, K. C., McNerney, G. P., Huser, T., Keller, G., Kong, C. W., Li, R. A. Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Arrhythm Electrophysiol. 6, 191-201 (2013).


Fu, J. D., Rushing, S. N., Lieu, D. K., Chan, C. W., Kong, C. W., Geng, L., Wilson, K. D., Chiamvimonvat, N., Boheler, K. R., Wu, J. C., Keller, G., Hajjar, R. J., Li, R. A. Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes. PLoS One. 6, e27417 (2011).


Wilson, K. D., Hu, S., Venkatasubrahmanyam, S., Fu, J. D., Sun, N., Abilez, O. J., Baugh, J. J., Jia, F., Ghosh, Z., Li, R. A., Butte, A. J., Wu, J. C. Dynamic microRNA expression programs during cardiac differentiation of human embryonic stem cells: role for miR-499. Circ Cardiovasc Genet. 3, 426-435 (2010).


Fu, J. D., Jiang, P., Rushing, S., Liu, J., Chiamvimonvat, N., Li, R. A. Na+/Ca2+ exchanger is a determinant of excitation-contraction coupling in human embryonic stem cell-derived ventricular cardiomyocytes. Stem Cells Dev. 19, 773-782 (2010).


Liu, J., Lieu, D. K., Siu, C. W., Fu, J. D., Tse, H. F., Li, R. A. Facilitated maturation of  Ca2+ handling properties of human embryonic stem cell-derived cardiomyocytes by calsequestrin expression. Am J Physiol Cell Physiol. 297, C152-159 (2009).


Lieu, D. K., Liu, J., Siu, C. W., McNerney, G. P., Tse, H. F., Abu-Khalil, A., Huser, T., Li, R. A. Absence of transverse tubules contributes to non-uniform Ca(2+) wavefronts in mouse and human embryonic stem cell-derived cardiomyocytes. Stem Cells Dev. 18, 1493-1500 (2009).


Chan, J. W., Lieu, D. K., Huser, T., Li, R. A. Label-free separation of human embryonic stem cells and their cardiac derivatives using Raman spectroscopy. Anal Cham. 81, 1324-1331 (2009).


Liu J., Fu J. D., Siu C. W., Li R. A. Functional sarcoplasmic reticulum for calcium handling of human embryonic stem cell-derived cardiomyocytes: insights for driven maturation. Stem Cells. 12, 3038-44 (2007).


Wang K., Xue T., Tsang S. Y., Van Huizen R., Wong C. W., Lai K. W., Ye Z., Cheng L., Au K. W., Zhang J., Li G. R., Lau C. P., Tse H. F., Li R. A. Electrophysiological properties of pluripotent human and mouse embryonic stem cells. Stem Cells. 10, 1526-34 (2005).

Product ID Product Name Qty
1-0101 Unpurified hPSC-CMs (>70% purity) ≥ 5 million viable cells/Vial Request Quote
1-0102 Unpurified hPSC-CMs (>70% purity) ≥ 10 million viable cells/Vial Request Quote
1-0201 Purified hPSC ventricular CMs (>95%, MLC2v) ≥ 5 million viable cells/Vial Request Quote
1-0202 Purified hPSC ventricular CMs (>95%, MLC2v) ≥ 10 million viable cells/Vial Request Quote

How are the cardiomyocytes stored and shipped?
Cardiomyocytes are harvested on Day 15 post-differentiation, isolated and suspended in DMSO, and cryopreserved at -80oC in 1.5mL cryovials containing 106 cells each. The cells are shipped frozen.

How are the cardiomyocytes differentiated from human pluripotent stem cells?
The cardiomyocytes are differentiated using our patent-pending small molecule-based differentiation method. Please see our publications Stem Cells Transl Med 3, 18-31 (2014) and Stem Cells Dev 23, 1704-1716 (2014) for details.

What types of characterization have been performed on the cardiomyocytes?
Manual patch-clamp recordings of action potentials and ionic currents, optical recordings of action potentials and Ca2+ transients, immunofluorescent imaging, transcriptomic analysis, and proteomic analysis have been performed to characterize the cells.



Any other product enquiry? Please leave us a message and our technical support will get back to you soon.

Subscribe To Our Newsletter

Fill out the following to subscribe and start receiving updates from us!